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ABSTRACT 

Short-period seismograms representing nine tele- 

seismic earthquakes recorded by vertical component in- 

struments in the extended E3 subarray at the Montana 

LASA were bandpass-filtered and beam-formed to determine 

the effect on average input signal-to-noise ratio, signal, 

and noise. 

Results of the study show that beamsteering all 2 5 

outputs (prefiltered O.^-S-O cps) from the extended E3 

subarray fails to improve the signal-to-noise by the 

square root of N, where N is the number of inputs to 

the beams.  This is due partly to the fact that noise is 

in some measure correlated between the more closely spaced 

sensors and therefore is not reduced by N , and partly to 

signal losses (1-2 db) accompanying the beam-forming pro- 

cess. 

The analysis further indicates that beams consisting 

of 3, 6, and 7 input traces prefiltered 0.4-3.0 cps reduce 

rms noise levels at the subarray by approximately N at a 

minimum inter-sensor spacing equal to or greater than 6 

kilometers.  Finally, if the input data are prefiltered to 

the band 0.6-2.0 cps, the minimum spacing for N noise re- 

duction is decreased to about 5 kilometers. 



INTRODUCTION 

This analysis was undertaken in support of the Vela 

Seismological Center's effort to evaluate the performance 

of the extended E3 subarray at the Large Aperture Seismic 

Array in Montana, and to determine the minimum spacing for 

short-period LASA subarray elements for which beamforming 

reduces the rms noise level by N .  We are concerned with 

signal loss, rms noise reduction,noise power reduction at 

1 cps, and signal-to-noise ratio gain, resulting from pre- 

filtering and beamsteering various combinations of outputs. 

The data used in this study are nighttime recordings, 

made by sensors in the E3 subarray, of nine teleseismic 

earthquakes which occurred over a two month period, January- 

March 1967.  We refer to the enlarged E3 subarray which 

has been in operation since December 1966.  This subarray 

has a diameter of ~ 19 kilometers, and contains 25 sensors 

with spacings >^ 3 kilometers, as shown in Figure 1. Ad- 

ditional information pertinent to sensor locations, azimuths, 

and projections is listed in Table 1.  The source data shown 

in Table 2 were taken from P. D. E. cards furnished by the 

USC6GS. 

In this study data were reduced by detrending all seis- 

mograms and by correcting for system magnification at 1 cps 

to convert digital counts to millimicrons (my ) ground dis- 

placement. The data were further prepared for beamforming 

by prefiltering using two recursive bandpass filters, in- 

dependent of one another, to eliminate noise frequencies lying 

well outside the passband of the signal, i.e., long-period 

microseisms and frequencies greater then 2-3 cps.  Outputs 

from each filter were beamsteered automatically, by computer, 

using the assumed apparent phase velocity and back azimuth 

(station-to-epicenter) shown in Table 2. 

- 1 - 



INNER CIRCLE  REPRESENTS SIZE OF ORIGINAL   ES 

rigure 1. LASA Extended E3 Subarray 
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PROCEDURE 

The short-period seismograms used in this analysis were 

recorded by vertical-component LASA sensors which produce 

upward trace deflection corresponding to upward ground motion 

at the recording site.  All outputs were bandlimited either 

in the range 0.4-3.0 cps or 0.6-2.0 cps, using 4-Pole Butter- 

worth recursive filters whose amplitude responses were de- 

scribed by Flinn et_al, (1966). 

Beamforming 

Two procedures were used in selecting data to be beam- 

formed.  Our objective in the first was to evaluate the per- 

formance of the extended array, and we concerned ourselves 

with varying the number of inputs, N, to a beam as opposed 

to evaluating the effect of inter-sensor spacing,A.  Beams 

were formed on P arrivals using data prefiltered to the 

band 0.»4-3.0 cps for N equal to 6, 12, 13, 18, 19, and 25. 

These correspond to traces recorded in the oucer (or inner) 

ring, outer 2 rings, inner two rings plus the center, outer 

3 rings, inner three rings plus the center, and the entire 

subarray. We have already pointed out that a uniform dis- 

tribution of sensors was not considered in beamsteering 

these data.  Consequently, it follows that about the only 

meaningful reference to spacing is relative to the minimum 

separation of sensors contributing to the beams; these 

values (in kilometers) corresponding to the beams discussed 

above are 9.5 or 3 (outer ring or inner ring, respectively), 

i+. 7, 3, 3, 3, and 3.  . 

A similar procedure was used for a-ach of nine events to 

determine the average effect of a variable number of beam 

inputs tS}  on signal loss, rms noise reduction, noise power 

reduction at 1 cps, and signal-to-noise ratio enhancement, 

each quantity being referred to a mean taken from the input 

traces. 
- 2 - 
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Table 3. Sensor Groups and Spacing for N=6 
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Table 5.    Sensor Groups  and Spacing for N»7 
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Table 3 lists four sets of traces contributing to beams 

containing six inputs each (N=6), where each set represents 

traces recorded on an individual ring of the subarray.  This 

procedure was our Jirst attempt at holding N constant and 

varying A» in this instance a circumferential measurement. 

Seven of the original nine events were used to obtain average 

values.  The procedures discussed thus far were extended to 

include power spectra based on individual channels and sum 

traces.  Spectral estimates were computed over 60 seconds 

of noise (1200 digital points) using 120 lags. 

In the second part of the study we used seismograms 

recorded during the ni^ht of 17 March 1967 to establish a 

relationship between inter-sensor spacing and noise reduction. 

Two experimental methods were used to determine noise reduct- 

ion by beaming either three or seven traces; the first method 

relied on the zero lag autocorrelations and cross-correlations 

as described in the following section, while the second con- 

sisted of trace summation.  In the case of N=3, uniform sensor 

spacings of 3, *+, 6, 8, 9, 10, 14, and 1R kilometers were used 

and for N--7 separations of 3, 6, 8, and 9 kilometers were em- 

ployed.  Solutions were obtained for data limited to the band 

0.4-3.0 cps after which we repeated the process with traces 

prefiltered to 0.6-2.0 cps. 

In Tables 4 and 5 we have listed sensors which contri- 

buted to 3-element and 7-element beams respectively. As shown 

in Table 4, outputs from either 2 or 6 beams were used to com- 

pute average noise reduction values.  Referring to Table 5, 

we note that only one beam for each spacing was used to de- 

scribe noise behavior. 

Zero-lag correlations 

The reduction in noise due to straight summing is based 

on the assumption that the data trace at each location in the 

E3 subarray consists of a zero-mean, stationary-noise process 

- 3 - 



with a cross-correlation function given by 

ECnk(t)nJl(t')] = RkÄ(t-t') (1) 

Under these conditions it can be shown that the noise reduction 

due to summing can be expressed as 

R = -10[log N - logU + (N-l)p}] (2) 

where p = M/N2 is the ratio of the average zero-lag cross-cor- 

relation.  Hence 

R = klil Rkil(0) 

N(N-l) 
R2 = 

z 
k 

Rkk(0) 
(3) 

N 

This equation is the direct time domain equivalent of that used 

by Capon et al. (1967) in the frequency domain, and can be in- 

terpreted as the reduction over the entire band of interest.  In 

this report, this band is either (0.»+-3.0 cps) or (0.6-2.0 cps), 

since the data are prefiltered to either one of these two bands. 

Now, examining equation (2) shows that if p = 0 the reduction 

is -10 log N which is the (N)^ value expected with uncorrelated 

noise, however, if p is negative, then one may expect on certain 

occasions to have noise reductions exceeding (N) . 

In the computational procedure for an array of N elements, 

we shall present the sample estimates for the reduction which 

are calculated from the estimated zero-lag auto-correlation 

and crose-correlation functions 

^<0) 

T 
-   nk(t)nJl(t) dt, k,Ä =1,...,N (4) 



If the estimated reduction is R and the estimated value of the 

parameter p is r then the sample reduction is written as 

R = - lOClog N - log {l+(N-l)r}] (5) 

It is experimentally observed that the cross-correlations 

between sensors in the E3 subarray tend to decrease proportion- 

ally to the spacing and that sets of seismometers at the same 

spacing tend :o produce uniform sample reductions in noise. 

This suggests that p is approximately constant for a given 

spacing.  If we assume that the normalized zero-lag cross- 

correlation is constant for each pair in the array, i.e.,. 

P = 
Rkit(0) 

Rkk(0) 
K 5 36 — J. 9 • . • j N (6) 

then, using an argument similar to that used in deriving 

Fisher's asymptotic z approximation (see Anderson 1958, pp.74-5) 

we may show that the distribution of the sample reduction appro- 

aches a normal distribution with mean 

yR -lOClog N - log{l+(N-l)p}] 

and standard error for the case N=3 

/ 2NBT 

(7) 

(8) 

where B is the bandwidth over which the zero-lag correlations 

are computed and T is the sample length in seconds.  Figure 2 

shows the expected reduction for each value of the common theo- 

retical noise correlation for N=3.  The two reduction points 

of interest on the curve are for the values of p (as indicated 

experimentally) cox'responding to 3-km and greater than or equal 

to 6-kilometer spacings. The vertical deviations are 95% con- 

fidence limits for the SDL filter with the parameters specified 
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in the following table. 

SDL Filter (.^-3.0) Lincoln Lab Filter (.6-2.0) 

T 

B 

6BT 

aR 

50 Sec 

2.6 ops 

260 

.715(l-p) 

50 Sec 

1.4 cps 

140 

.985(l-p) 

Signal, Noise, and Signal-to-Noise Ratio 

We define signal amplitude as one-half the peak-to-trough ex- 

cursion, in mu, occurring in the first eight seconds of the P sig- 

nature.  Noise is considered to be either the rms value, in my, 

obtained in a 50-second interval ahead of P, or noise power, in 

my2, at 1 cps, computed from a 60-second sample ahead of the P 

arrival.  Signal-to-noise ratios are based on rms noise values. 

Each of the quantities signal loss, rms noise reduction, and S/N 

ratio improvement was computed in the following manner: 

/value on the beamformed output trace \ 
db  20 log Vaverage value from traces in the beam' 

and noise power reduction at 1 cps was determined by 

/noise power on the beamformed output traceA 
db i 10 log ^average noise power on infit traces      / 

Finally, in those cases where noise reduction was computed in terms 

of the zero-lag autocorrelation and cross-correlations, we used the 

following formula: 

db = -10 [log N-log{l+(N-l)p}J 

As we pointed out earlier, values obtained for N=6 are averages 

over seven events, whereas values based on the 17 March 1967 record- 

ings for N=3 are averages of either 2 or 6 beams representing 

different combinations of outputs from sensors at a given spacing. 

6 - 
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RESULTS 

In this section we first present results pertinent to 

the effectiveness nf beaji^teering outputs from th* extended 

E3 subarray (Figures 3, 4, 5, and 6), and then extend the 

discussion to consider the effect of inter-sensor spacing 

on short-period beamforming results (Figures 7 and 8). 

Figure 3 is a plot of noise reduction, either rms or 

power at 1 cps, as a function of N.  The figure illustrates 

four significant points:  first, N^ reduction is obtained 

for noise power at 1 cps only in the case of N=6 (the outer 

ring);  second, the reduction of rms noise levels never 

quite reached N^; third, noise reduction if  less favorable, 

relative to IT*, for greater N;  and fourth, beams made of 

outputs from the outer ring(s) yield more noise reduction than 

those consisting of traces recorded in the inner ring(s). 

The last result is explained by the fact that inter-sensor 

spacing tends to be greater on the outside rings, and the 

noise is therefore less correlated between adjacent sensors. 

Figure 4 shows average S/N gain as a function of N. 

Here we see immediately that N^ enhancement is never 

achieved, due largely to the fact the rms noise reduction 

falls short of IP as shown by Figure 3, and partly because 

1-2 db of signal is lost in the beamforming process. We 

further note that enhancement is less favorable relative to 

N for larger N, and that the outer ring(s) yield better 

results than the inner ring(s). 

Figures 5 and 6 show noise reduction and S/N enhance- 

ment versus sensor spacing for N=6.  In this case beams were 

formed using outputs from individual rings so that values 

plotted at A = 3 km correspor.d to data recorded on the in- 

side ring, A = 6 the second ring. A-8 the third ring, amC 
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A = 9.5 km the outside ring; these spacings could more appro- 

priately be called "minimum" intervals. As shown in Figure 5, 

noise power at 1 cps is reduced by N5 in the A interval 6-8 

kilometers, and rms noise is reduced to within 1 db of N  at 

A = 6 and remains reasonable constant thereafter.  On the other 

hand, S/N enhancement (Figure 6) reaches a maximum, + 5 db, at 

A = 6 and remains essentially constant beyond.  Once again we 

are reminded that imprecision in the beamforming process accounts 

for 1-2 db signal loss. 

We turn now to examples of beamforming in which N has 

been held constant and spacing between adjacent sensors has 

been changed from a minimum of 3 km to a maximum of 16 km 

(Figures 7 and 8).  Data plotted on Figure 7 were prefiltered 

to 0.4-3.0 cps, while those shown in Figure 8 were bandlimited 

in the range 0.6-2.0 cps.  In both figures the dashed curves 

represent results for noise reduction" based in part on the 

average of the noi^e mean squares (equation 2),whereas the 

plotted points are Lased on the average rms value input to the 

beair  Referring to Figure 7, we note that the minimum sensor 

spacing indicated by either experimental method for N=3 or N=7 

is about 6 km, if N5 noise reduction is desired. Actually, 

values based on average rms reach N reduction at 8 or 9 km. 

It is important to remember that the plotted data for N=3 

are really averages of either two or six beams, whereas, each plot 

for N=7 was taken from a single beam. As shown in Figure 8, the 

minimum spacing indicated for data prefiltered 0.6-2 cps is about 

5 km, and rms values reach N8 at about 8 km spacing. 

- 8 - 
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» CONCLUSIONS 

i 

The following conclusions are based on the results of 

a beamforming study which used short-period vertical-com- 

ponent seismograms recorded during January-March 1967 in 

the extended E3 subarray at the Montana LASA. With the 

exception of beams made up of seven inputs, our results 

represent averages taken from several beams. 

1. Beams consisting of prefiltered (O.'t-S.O cps) 
•    's inputs from the entire extended E3 subarray do not yxeld N 

improvement in signal-to-noise ratio.  This is due, primarily 

to the fact that noise is partly correlated between adjacent 

sensors and therefore is not reduced by as much as N ,and 

partly to signal losses accompanying the beamforming process. 

2. If input data are prefiltered to 0.4-3.0 cps, beams 

composed of six traces reduce noise by approximately N when 

element spacings are equal to or greater than 6 kilometers. 

3. For data prefiltered 0.4-3.0 cps, beams consisting 

of either 3 or 7 inputs reduce the average of the noise mean 

squares and average rms noise approximately by N at a 

minimum sensor separation equal to or greater than 6 kilometers. 

If the data are prefiltered 0.6-2.0 cps, the minimum spacing 

is reduced to about 5 kilometers. 

4. Average signal loss due to imprecise beams amounts 

to 1-2 db. 

J 
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